Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin.
نویسندگان
چکیده
Drought-induced cavitation resistance varies considerably between tree species and forest ecosystems (Maherali et al., 2004; Delzon et al., 2010) and is closely linked to survival under severe drought in both conifers (Brodribb & Cochard, 2009; Brodribb et al., 2010) and angiosperms (Kursar et al., 2009; Anderegg et al., 2012; Barigah et al., 2013; Urli et al., 2013). Choat et al. (2012) recently reported that most trees operate very close to their threshold of cavitation, leaving them potentially vulnerable to drought-induced mortality in a warmer/drier world (Engelbrecht, 2012). Indeed, species growing in dry environments are more resistant to droughtinduced cavitation (more negative water potential at 50% cavitation,P50) but experience amore negativeminimumwater potential (Pmin) than those growing in wet environments. The so-called hydraulic safety margin, the difference between the level of water stress experienced by a species in the field (Pmin) and the level of water stress leading to hydraulic failure, is, therefore, remarkably narrow, whatever the forest species and biome considered (Choat et al., 2012). This pattern provides clues to the global droughtinduced mortality currently observed, even in very wet environments, such as tropical forests (Allen et al., 2010). Klein et al. (2014) play down the functional significance of the hydraulic safety margin in the vulnerability of forests to drought, pointing out the important role played by additional mechanisms, such as the ability of trees to repair embolism. While it is obvious that drought-induced forest dieback is a complex process involving a number of biotic and abiotic factors, we would like to draw the attention of scientists to the state of evidence for embolism repair, thereby guiding research on tree drought resistance into the most relevant and fruitful directions.
منابع مشابه
Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model
Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very f...
متن کاملPlant hydraulics improves and topography mediates prediction of aspen mortality in southwestern USA.
Elevated forest mortality has been attributed to climate change-induced droughts, but prediction of spatial mortality patterns remains challenging. We evaluated whether introducing plant hydraulics and topographic convergence-induced soil moisture variation to land surface models (LSM) can help explain spatial patterns of mortality. A scheme predicting plant hydraulic safety loss from soil mois...
متن کاملRecent Advances in Hydraulic Fracturing for Enhanced Well Productivity: State of the Art Report
Hydraulic fracturing of horizontal wells is considered as the main reason for the phenomenal increase in production of oil and gas from marginal and unconventional reservoirs in North America. The process evolution started more than a decade ago and has resulted in ultra-low permeability reservoirs producing at close to the same rates as some of the very prolific reservoirs in the Middle East,...
متن کاملCoordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.
Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the...
متن کاملHydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves.
Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 203 2 شماره
صفحات -
تاریخ انتشار 2014